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ON ST~ILI~ OF STEADY NOTIONS OF A DYN~ICALLY SY~ETRIC SOLID BODY 
AT A TRIANGULAR POINT OF LIBRATION* 

V.N. RUZANOVA 

The motion of a dynamically symmetric solid body is considered relatively to its 
center of mass, placed at the triangular libration point L4 of the circular restrict- 
ed problem of three bodies. It is assumed that the motion of the basic bodiesM,and 
Ma of ultimate mass m1 and m,, and that of the solid body center of mass 0 is de- 
fined by the equations of the plane circular restricted problem of three bodies. 
The dimensions of the solid body are assumed small in comparison with the distance 
of its center of mass to M, and M,, which enables us to neglect the effect of mo- 
tion of the solid body about its center of mass on the motion of that centeritself. 

Sufficient conditions of stability of a gyrostat satellite were obtained in /l/ on the 
assumption that the satellite center of mass is located at the points of libration. The steady 
motions of the body whose center of mass is located during the whole time of motion at one of 
the libration points in the gravitational field of two point mass were obtained in /2/. In /3/ 
the problem of their stability was investigated in the first approximation, and the sufficient 
conditions of stability of certain of these motions were obtained in /In/. The investigation 
of stability of the relative equilibrium of an axisymmetric solid body whose center of mass 
moves along the periodic orbit of the circular restricted problem of three bodies was carried 
out in /5/. 

To investigate the solid body motion relative to its center of mass we introduce two 
systems of coordinates: the orbital OXYZ (the axis 02 is a continuation of the radius-vec- 
tor M,L,, the axis OY is normal to the plane of triangle MIM,L, and is directed so that 
viewed from its end the rotation of points M1 and MZ is counterclockwise, the OX axis com- 
plements the axes OY and 02 to a right-hand trihedral), and the attached system OSIJZ (whose 
axes are directed along the principal central axes of inertia of the body, with the OZ axis 
directed along its axis of dynamic symmetry). The orientation of the attached coordinate 
system relative to the orbital one is defined by Euler's angles rp. 8,~. 

Prom the expression for the body kinetic energy, for the projections P* QT r of absolute 
angular velocity of the body on axes Os,Oy,Oz,and for the force function /6/ it follows that 
q is a cyclic coordinate, hence the projection of the absolute angular velocity on the oz 
axis is constant r= + = const. 

We select the distance between points iU1 and M$ as the unit of length. Then (R is the 
angular velocity of bodies Ml and M,, and f is the universal gravitational constant) 

k, = (1 - p) 9, kg = /m’J 

(p = m&m + mZ). ki = fmi) 

Assuming in the Lagrange equations of motion of the body axis of symmetry relative to the 
orbital system of coordinates to be 9" =tp'= 9" = 6' = 0, P=& 6=8, ftheprimedenotes different- 
iation with respect to Z=nt ), we obtain for the determination of steady motions of the 
body the following system of equations: 

4sin 2P. sin*fJ, + 8ag rin q. sin&- 

3 (a - 1) P @sin 2*, sin*e, + ncos $ sin 213,) I 0 
(1) 

4000*% sia 2% + Sap COs O. cos B. - 3(a - 1)(4 (1 - a) sin 26, + 
p (sin 28, - 3sin3*@ sin 29, - 2nsin *$000 26,)l = 0 

a = O/A, fi = r&n 

Omitting the complete analysis of system (1) for arbitrary parameters 
consider the following of its particular solution: 

a,p,p, we shall 

6, i= n/2, V. = n (0 - is any) (2) 
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Solution (2) and, also (3), were obtained in /2/ for p-0.5 
For solution (2) the axis of dynamic symmetry of the body is normal to the plane of tri- 

angle MIhf,L, and the body rotates about the axis with constant velocity o. For solution 
(3) the axis of dynamic symmetry of the body lies intheplane of the triangle hflM,L, under 
angle 8, to the radius-vector M,O. and the angular velocity of proper rotation 9~'~ as well 
as r, are equal zero. 

To investigate the stability of obtained solutions we use the equation of motion in the 
Hamiltonian form. 

Motion (2) corresponds to the solution of HamiLton equations 

0 =J2+ =I' Pe = Y,. 0 = .1 + 11, p* = Y* (4) 

We expand the Hamiltonian function in series in the neighborhood of solutions (4), set- 
ting 

We obtain 

H=H,fH,+... (5) 

ff,= y-a*fl’-zap- 1 5 +(a-l)(l-+p)]z14+ 

+ 12aB - 9 (a - 1) pl rl%* - [A up + +- (a - 1) p] +p - 

The characteristic equation of the linear system defined by the form H,, is of the form 

For stability it is necessary that all roots of this equation be pure imaginary. The suf- 
ficient condition of stability is the condition of positive definiteness of the quadratic form 

-8 
Fig.1 

In Fig.1 for p- 0.01215. which corresponds to the systemEarth 
-Noon, in the parameter plane or,B(O<a<2, --0o<B<+oo) the mo- 
tion in the shaded regionisunstable, in region 1 it is stable, 
and in region 2 only the necessary conditions of stability are 
satisfied. In region 2 solution (2) is in the first approximat- 
ion stable. In that region the form E, is not of fixed sign but 
the characteristic equation (6) has only pure imaginary roots. 

To solve the problem of stability in region 2 in the strictly 
nonlinear sense by means of real canonical transformation ziry,* 
Pi. Pi. obtained in /0/, we reduce function ii, to the normal form 

H, = -+ WI (9? + Pl? - -+ ol (91'+ PI? 

and then (since H,=O) by the Birkhoff transformation 91, pi-mqi*. 

Pi* we reduce the Hamiltonian If to the form 

Ii = Ol'r - m*r* + car,' + %V, + %SQ + (7) 

nr,Gsin Co1 + 3~) + br,Gcas Co1 + 3%) 

9,. = m sin cp,, p,* = +CG c0S vi 

where the quantities Cto* C,,’ Cos. and 9 and b are calculated using the coefficients of form Hd 

in variables 91, pd. 
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If the system does not have fourth order resonance &=3oa. then the last 

tie terms in formula (71 are absent. In that case the Arnolld-Mozer theorem, the 

equilibrium position of system with the Hamiltonian f5f is stable, if Dfs. B)= CPC@X~+ cl+%%+ 
~~~+0. In Fig.1 the curvs D @, fi)=o for p= 0.01215 is shown by the dash line. The question 

of its stability was not considered. 
Along the resonance curve aa= 30, (shown by the dash-dot line in Fig.11 according to 

Markeev's theorem /8/, the equilibrium position is Stldlsle, if 

and unstable when the inequality sign is the opposite. 
Computer calculations have shown that on the resonance curve in regiun 2 contains two 

sections of instability: (p = 0.01215): --t.767 < fi <--1.573 and 0.386 < B<O.4@. 
Let us now investigate the stability of the first; of solutions (3). The analysis of the 

second solution is analogous. The following solution of Hamilton equations: 

corresponds to the considered here motion. 
We introduce new canonical variables zir Yi using formulas 

It can be shown that the inequality 

a<1 IlO) 

is a condition for the roots of characteristic equation of the linear system to be pure imag- 
inary, as well as the condition of positive definitsness of the quadratic form (9) i i.e. (10) 
is the necessary and sufficient condition of stability of solution (8). Condition 110) means 
that the body motion is stable, when its polar moment of inertia is smaller that ita equator- 
ial moment, i.e. the body is elongated along its axis of symmetry, a condition obtained in /4/. 
For the second solution of (3) the stability condition is a>i. 

We note in conclusian that the consideredhereproblem is a natural extension of the well 
studied problem of regular precession af a satellite in circular orbit. 
#at problem appeared in /4/. 
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